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Abstraet Wtb use of h e  exact recursion equations of the generating functions, we determine 
the asymptotic behaviour of bond percolation on branching Koch CUNW and obtain the critical 
exponents a, g, y and U. The scaling law 2 -a = y -1- Zg = drv is obtained; this is similar 
to the scaling law for a regular lattice, except that the fractal dimension & is replaced by the 
Euclidean dimension d .  

1. Introduction 

Percolation is a useful model for many physical problems, such as polymer and diluted 
magnet systems; the study of fundamental phase transition models is always an active 
field in statistical physics [I]. In recent years, percolation on fractals has been studied 
[2-6]. The results of research have shown that the percolating state takes place with a 
non-trivial threshold (pc < 1) for infinitely ramified fractals and with pc = 1 for finitely 
ramified fractals. Some critical exponents of percolation on infinitely ramified fractals have 
also been obtained using renormalization-group methods [3]. However, there has been no 
work concerning the scaling law for fractals. 

In this paper we study bond percolation on the branching Koch curve shown in figure 1. 
The branching Koch curve, together with other deterministic fractals including the Sierpinski 
gasket and Sierpinski carpet, are often used as a theoretical ‘laboratory’ on which many 
physical problems can be solved [7-121. On the branching Koch curve the bond percolation 
threshold has been proved to be a trivial value 1 [2,3]. However, we are still interested 
in finding the critical exponents and discussing the scaling law, as has heen achieved in 
the case of the one-dimensional thermal phase transition where only a trivial critical point 
Tc = 0 exists [13]. 

Figure 1. Growth of the branching Koch curve. The fust three stages are shown. 

We have calculated the critical exponents a, p and y with use of the generating function 
method proposed by Dhar [14] in studying self-avoiding random walks. The critical 
exponent v is obtained by applying a widely used renormalization-group transformation 
scheme to study the problems of percolation, lattice animals and self-avoiding random 
walks [15]. We obtained the scaling law, 2 -a = y + 28 = &v, which is the first such 
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scaling law for fractals. This scaling law is similar to the one for a regular lattice except 
that the fractal dimension df is replaced by Euclidean dimension d. We have also calculated 
the critical exponents a, 0, y and U on other branching Koch curves (shown in figure 2) 
and found that the scaling law 2 - a = y + 28 = dfu is always valid. 

S Wu and 2 R Yang 

Figure 2. Some branching Koch c w e s  

2. Method and result 

The behaviour of a system close to its percolation threshold is described by critical exponents 
a, p. y ,  ut.. which are defined as [l] 

t(P) = IP - PCI-” (4) 
where n, is the average number (per lattice site) of s-bond clusters and depends on 
concentration p ,  5 is the correlation length and corresponds to the average radius of a 
typical percolation cluster, and the subscript ‘sing’ denotes the leading singular terms. 

The fractal we consider is a branching Koch curve shown in figure 1, with fractal 
dimension [91 

In 5 
In 3 

dr= -. (5)  
The key point for finding critical exponents is to form the asymptotic expressions for 

E, ngr E, sns and E, s2ns. As we see, the structure of the branching Koch curve at stage 
r is constructed by stager - 1 via an iteration procedure; therefore, we can calculate E, n,, 
E, sn, and E, i2n, stage by stage in terms of recursion relations. 

We call a cluster L order r if r is the minimum order at which L can be completely 
described in the rth-stage branching Koch curve, and denote the number of all rth-order 
clusters in the rth-stage branching Koch curve by S,; then we have 

where tr is the number of the rth-stage branching Koch curve that the whole lattice is 
divided into. In appendix A, we derive N = 37, so then equation (6) becomes 
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We now define three independent restricted generating functions A,, B, and D, which 
are necessary to construct S,, as shown in figure 3. The generating function A, corresponds 
to those configurations where. a part of the cluster penetrates through one comer vertex of 
the rth-stage branching Koch curve and terminates at its intemal points. B, corresponds 
to those configurations where a part of the cluster joins the two comer vertices of the rth- 
stage branching Koch curve. D, corresponds to those configurations where two parts of the 
cluster penetrate separately through the two corner vertices but do not join each other. In 
figure 4 we have drawn all possible rth-order clusters; S, can now be written as 

(8) S, = (1  + B:-l)A;-l + (2Br-1 t 2)A:-1 + 3B?-1Af-lDr-i + B,-iA?-,. 

7 - - 
A, B, D, 

Figure 3. Three restricted generating functions are shown. 'x' denotes the comer vertex of the 
rth-stage Koch CUNC. 

B ~ , A : . ,  

Figure 4. Ail the possible configurations of S; are shown. A r - ~ ,  B,-I and D,-I are the three 
restricted generating functions we have defined, 

In order to obtain the asymptotic form of C , n ( s )  we have to study the recursion 
relations of the restricted generating functions. In figure 5, all possible ways of constructing 
A,+I are shown. By summing all these contributions we obtain 

(9) A,+i = (1 + B,?)A, + (Br + B,)A, 2 2  + 3B;D,A, + B?A:. 

B,+i =B:+3B,!Dr+B:A? (10) 
D,+i = 2 B ~ D , + 8 B : D : + 3 B ~ A : D , + A : + 2 B r A :  +2B;A:. (11) 

In the same way we obtain 

The initial values (pertinent to the zeroth-stage Koch curve) of these functions are 

where p is the occupied probability of one bond. 
Since the recursion equations (9)-(11) are very complicated, it is impossible to obtain 

the explicit form of A,, B, or C,. Let us restrict ourselves to considering the critical 
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A+A+A+ 

B:D,A, B X  

Figure 5. All the possible ways of consmcting A,+,.= shown. 

region only. Following Dhar [14], we introduce an infinitesimal quantity 6 characterizing 
the deviation from critical value pc  = 1, and write 

A0 = Do = 6 (14) 
Bo = 1-6. (15) 

6<€<<1  (16) 

Let us choose a small positive number 6 ,  which satisfies 

and define the marker ro in terms of the relation 

Br, = 1 - C. (17) 
Then we have two regions: for r < ro, B, approximates to 1; and for r > ro, B, rapidly 
approaches zero. Hence, for r < ro. the recursion relations (9) and (11) become 

A ~ + I  E;: 2Ar (18) 
Drt1 m 20,  (19) 

where terms proportional to second- and higher-orders of 8 are neglected. 
Considering equations (14). (U), (18) and (19), we have for r < rg: 

A, m 2'6 (20) 
D, E;: 2'6. (21) 

Br % 1 - 2'6 for r < ro. (22) 

Substituting the expressions (20) and (21) into the recursion relation (10) we obtain 

Comparing equations (17) and (ZZ), we obtain 

For r > ro, B, is approximated as zero, and A,, D, become 

A, An (24) 
D, % A ; .  (25) 

Combining the expressions (7) and (S), and equations (ZO), (21). (24) and (25), we 
finally obtain the asymptotic form of C,n,: 

En. - K, (E)$ + K ~ ( c )  (i)'" a3 + 0(a3). (26) 
.I 
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Substituting expression (21) we obtain 

En, - K~(E)s'  + ~ 3 ( e ) P f l ~ ' +  0(s3) 
s 

where K , ,  K2 and K3 are all proportional constants depending on E .  

have [l] 
We see that the second t em is the leading singular term of expression (27) and we then 

In 5 
u=2-- .  

In 2 
Therefore, we have obtained the critical exponent CY. The critical exponents ,4 and y 

can be calculated similarly. From figure 4 we note that for r < re, B, approximates to 
one; the contributions of the rth-order clusters to E, and c,v s'q are then proportional 
to 5'(5-'S,) and (5')'(5-'$) respectively. For r > TO, B, rapidly approaches zero, and 
then the dominant contributions to the rth-order clusters are from those smctures A;-, and 
2A:-, in which an inner vertex is surrounded by clusteers with maximum size 5'0. Thus for 
r > TO the contributions of the rth-order clusters to E, sn, and E, s2q7 are proportional to 
5'o(5-rS,) and (5ro)2(5-rS,) respectively; we then have 

Substituting the expressions (S), (20), (21) and (23)-(25) into (29) and (30) we obtain 

C S n ,  - ~ 4 ~ 6 )  (31) 
s 

where K4 and K5 are proportional constants depending on E .  
expressions (31) and (32) with (2) and (3), one finds that 

Then, comparing the 

+4 = O  (33) 
In 5 
In 2 

y = - .  (34) 

We have now calculated the critical exponents a, p and y with the use of the generating 
function method. The critical exponent U can be similarly obtained using the above 
procedure. In what follows we solve U by applying the scaling argument 1151 rather than 
using the generating function method. 

After a onestep scaling aansformation (with scaling factor b = 3), the correlation length 
aansforms as follows: 

C(P') = b-'B(p) (35) 
where p' is the renormalized occupied probability of bond. The recursion relation of 
renormalization group transformation is easily obtained as 

p )  = p3 -t p4 - p5. (36) 

From the above equation we obtain the hiviai fixed point p* = I. Linearizing p' at the 
vicinity of pc  we can write 

(37) 1 - p' = h(l - p )  
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where A = $$Ip. = 2. Substituting expressions (35) and (37) into (4), we obtain 

S Wu and Z R Ymg 

Combining the expressions of  a, p, y and v, we acquire the scaling law 

2 - a  = y +2p  = d f v  (39) 

which is similar to the scaling law satisfied on a regular lattice, except that we substitute 
the fractal dimension df for the Euclidean dimension d. 

3. Conclusion 

We have studied bond percolation on branching Koch curves. We calculated the critical 
exponents a, ,3 and y for the curve of figure 1 by using the generating function method 
and solved the critical exponent U in terms of the renormalization-group method, with 

The critical exponents are found to satisfy the scaling law 2 - a = y + 28 = d p .  
A similar calculation can be applied to the other branching Koch curves shown in 

figure 2 to obtain the critical exponents a, ,9, y and U. We found that the scaling law 
2-  a = y + 28  = Q?f U is still valid; we conclude that the scaling law is always satisfied for 
bond percolation on branching Koch curves. We suppose that this conclusion may also be 
correct for percolation problem on f?actals. 
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Appendix A. The derivation of equation (5) 

Let us denote the number of sites in an rth-stage branching Koch curve by N,; one can 
then easily obtain 

(AI) Nr+l = 5N, - 5 

and 

No =2. 

Then we have 

Since the whole lattice can always be divided into t,, rth-stage branching Koch curves, the 
total number of sites can be written as 
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where the terms in the bracket come from the consideration that as every five rth-stage 
Koch curves consist of an (r + 1)th-stage Koch curve, five sites need to be eliminated. 
Substituting equation (A.3) into (A.4) we obtain 

N = ? . t 5 '  4 7  ' (A5) 
Substituting equation (AS) into equation (6) in the text, one finds 

which is just equation (7) in the text. 
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